Conformational investigation of α, β-dehydropeptides. N-acetyl-(B-dehydrophenylalanine N-methylamide: conformational properties from infrared and theoretical studies, part XIV ‡

MAŁGORZATA A. BRODA, DAWID SIODŁAK and BARBARA RZESZOTARSKA*
Institute of Chemistry, University of Opole, 45-052 Opole, Poland

Received 19 May 2004; Revised 23 June 2004; Accepted 1 July 2004

Abstract

N\)-Acetyl-(E)-dehydrophenylalanine N^{\prime}-methylamide [Ac-(E)- \triangle Phe-NHMe], one of a few representative (E)- α, β dehydroamino acids, was studied by FTIR in dichloromethane and acetonitrile. To support spectroscopic interpretations and to gain some deeper insight into the Ac-(E)- Δ Phe-NHMe molecule, the Ramachandran potential energy surface was calculated by the B3LYP/6-31G*//HF/3-21G method and the conformers localized were fully optimized at the B3LYP/6-31 + G** level. The spectra and calculations were compared with those of the related molecules Ac- $\Delta \mathrm{Ala}-\mathrm{NHMe}$ and $\mathrm{Ac}-(Z)-\Delta \mathrm{Phe}-\mathrm{NHMe}$. The title compound assumes two conformational states in equilibrium in dichloromethane solution with a predominance of the extended conformer E . The Ac-(E)- Δ Phe-NHMe spectrum is like that of Ac- Δ Ala-NHMe, particularly in the region of bands AI and AII, and unlike that of Ac-(Z)- Δ Phe-NHMe. The positions of bands AI and II together with the $v_{s}\left(\mathrm{~N}^{1}-\mathrm{H}^{1}\right)$ band proves that the conformers E of both Δ Ala and $(E)-\Delta$ Phe compounds are stabilized by the quite strong C_{5} hydrogen bonds $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$. The same conclusion is drawn from the Ramachandran diagrams. The conformers E of both compounds are placed in the global minima and the gaps in energy order between them and the second conformer are large. The conformers E of $\Delta \mathrm{Ala}$ and $(E)-\Delta$ Phe, apart from the $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$ hydrogen bond, show the $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}^{1}$ interaction, and Ac-(E)- Δ Phe-NHMe displays the NH / π interaction with the $\mathrm{N}^{2}-\mathrm{H}^{2}$ projecting in the first carbon atom of the phenyl ring. The C_{5} hydrogen bond is stronger in $(E)-\Delta$ Phe than that in the Δ Ala compound. This is in agreement with interactions found in the calculated structures and can be explained by the influence of the phenyl ring in position (E). In acetonitrile, the molecule of Ac-(E)- Δ Phe-NHMe loses its C_{5} hydrogen bond and becomes unfolded, whereas that of Ac- Δ Ala-NHMe does not vary practically. Adopting conformation E in a non-polar solvent seems to be a general feature of the $(E)-\Delta$ Xaa residues. Copyright © 2004 European Peptide Society and John Wiley \& Sons, Ltd.

Keywords: ab initio calculation; FTIR spectroscopy; NH / π interaction; C_{5} hydrogen bond; (E)-dehydrophenylalanine; π-electron conjugation; α, β-dehydroamino acids; amide II

INTRODUCTION

α, β-Dehydroamino acids have a double bond between the C^{α} and C^{β} atoms and thus chirality is lost and $(Z) /(E)$ isomerism appears (Figure 1). Both (Z) and (E)forms occur in nature and are used for conscious peptide modification. The prototypical molecule not having a β-substituent is dehydroalanine ($\Delta \mathrm{Ala}$) and has been found in numerous members of the thiopeptide family of antibiotics [2,3]. Apart from this it serves in Michael addition with a range of amines and thiols, which provides an attractive route to the synthesis of natural and unnatural amino acid derivatives [4]. (Z)and (E)-dehydrobutyrine $[(Z)$ - and (E) - $\Delta \mathrm{Abu}]$ are the simplest and most common (Z) and (E)-dehydroamino acids. They occur in ribosomal lantibiotics, peptides with unusual chemical diversity [5-8], microcystins and nodularins [9-13] as well as in other phytotoxins

[^0][14]. (Z)- and (E)-dehydrophenylalanine [(Z)- and (E)Δ Phe)], chiefly the former, often serve as peptide modifiers [15-19]. Receptor proteins frequently discriminate quite precisely between the (Z) and (E)-disposition of the double bond $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ in their bioligands and compared with $(Z)-\Delta$ Xaa counterparts, $(E)-\Delta$-peptides are usually less active [15-20]. Much more is known about the conformational preferences of (Z)- α, β-dehydropeptides (for reviews see refs [19,21-24]) than those of their (E)analogues, because most of the preparative procedures yield exclusively or predominantly the former isomers [22]. In recent years, there has been increasing interest in the (E)-dehydroamino acids evidenced by finding new efficient and stereoselective methods for the synthesis of (E) isomers $[25,26$] and by revitalizing the photoisomerization of (Z)-dehydrophenylalanine as a route to the (E)-dehydrophenylalanine $[27,28]$.

The model dipeptides Ac-Xaa-NHMe with blocked amino and carboxyl groups are considered in order to mimic the incorporation of the Xaa amino acid residue into a peptide chain, and are the smallest structural core for building short-range interaction [29]. The conformational properties of such simple

Figure 1 General scheme for α, β-dehydroamino acid residue with ascription of β-substituent.
α, β-dehydropeptide related molecules, Ac- Δ Xaa-NHMe, where $\Delta \mathrm{Xaa}=\Delta \mathrm{Ala}, \Delta \mathrm{Val},(Z)-\Delta \mathrm{Leu},(Z)-\Delta \mathrm{Phe},(Z)$ - and $(E)-\Delta \mathrm{Abu}$ were examined and compared with those of their saturated counterparts [30-32]. It has emerged that the α, β-dehydroamino acid derivatives in solution easily acquire a C_{5} conformation that is not so readily accessible to their saturated analogues. The molecules of Ac- Δ Ala-NHMe that are devoid of steric hindrance even have an unusual, strong C_{5} hydrogen bond. The feature is also shared by the molecule of $\mathrm{Ac}-(E)-\Delta \mathrm{Abu}-$ NHMe without steric clash from the N-terminal end.

This paper studies the conformational properties of Ac-(E)- Δ Phe-NHMe. Phenylalanine seems to play an important role in recognition processes and is often located in a pharmacophoric region [33]. Therefore the constrained versions of Δ Phe with different degrees of control over the benzylic chain orientation are essential topographic tools for the rational design of peptide-based drugs [34]. The FTIR spectra of the sample compound in dichloromethane and acetonitrile were recorded and the modes of $v_{s}(\mathrm{~N}-\mathrm{H})$, amide I and amide II were analysed. To support the spectroscopic interpretations and to gain some deeper insight into the molecule, the Ramachandran potential energy surface was calculated on Ac-(E)- Δ Phe-NHMe with the B3LYP/6-31G*//HF/3-21G method and the conformers localized were fully optimized at the B3LYP/6-31 $+\mathrm{G}^{* *}$ level. The spectra and calculations were compared with those of the related molecules AcΔ Ala-NHMe and Ac-(Z)- Δ Phe-NHMe.

MATERIALS AND METHODS

Material

Ac-(E)- Δ Phe-NHMe was obtained by irradiation of Ac-(Z)Δ Phe-NHMe [28] and was of 99.8% purity as determined by HPLC. The analytical grade solvents, dichloromethane and acetonitrile, were dried further over $\mathrm{P}_{2} \mathrm{O}_{5}$, distilled and stored over freshly prepared molecular sieves.

FTIR Spectroscopy

The FTIR spectra were recorded at $20^{\circ} \mathrm{C}$ on a Nicolet 540 Magna spectrometer, at $2 \mathrm{~cm}^{-1}$ nominal resolution, using a liquid cell ($\mathrm{KBr}, 0.1$ and 0.2 mm). The spectra were analysed
by the curve-fitting procedure with a mixed (Gauss-Lorentz) profile implemented in the GRAMS/386 program [35].

Computational Procedures

The theoretical conformational properties were examined on the free $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe, Ac- $\triangle \mathrm{Ala}$-NHMe and Ac-(Z)Δ Phe-NHMe molecules using the Gaussian 03 package [36]. Calculations were performed on the trans-acetyl group ($\omega_{0} \sim$ 180°). To generate the (ϕ, ψ) potential energy surfaces, 85 structures each calculated at the B3LYP/6-31G*//HF/3-21G level were used. In each of them, all geometrical parameters were fully relaxed, except the constrained torsion angles ϕ and ψ. Values of these angles were chosen by using a step size of 30°, within the range -180° to 180° for the angle ϕ, and from 0° to 180° for the angle ψ. Inversion through achiral α-carbon [i.e. $(\phi, \psi) \rightarrow(-\phi,-\psi)$] yielded equivalent structures; therefore full (ϕ, ψ) potential energy surface maps were obtained in this way [37]. The energy surface was created by way of the Surfer 8 program using the radial basis function as a gridding method [38]. The minima observed on the surface were then subjected to full geometry optimization at the B3LYP/6-31+G** level. A second derivative analysis (frequency) on the optimized structures established all of them to be minima. The geometrical parameters of the corresponding energy-minimized conformers were then further discussed. The calculated total energy of conformational minima was corrected for zero-point vibrational energy (without scaling factor). The accessible conformational space of the studied molecule was assumed on the basis of the close resemblance between the Ramachandran contact map and the energy contours map within the limit of $5 \mathrm{kcal} \mathrm{mol}^{-1}$ [39], as is also applied elsewhere [40,41]. The effect of electrostatic solute/solvent interaction on the solute energies was investigated within the SCRF method using the polarizable continuum model (PCM) [42].

As the overall conformational profiles of modified peptides can differ from those of common peptides, the energyminimized conformers of the investigated molecules are described by the general short hand letter notation introduced by Zimmerman [40].

RESULTS

FTIR Spectra

The general formula, atom numbering and designation of selected torsion angles of Ac-(E)- Δ Phe-NHMe are given in Figure 2. Figure 3 and Table 1 present the amide mode and the $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ double bond stretching frequencies of this compound in dichloromethane along with the corresponding spectra of the cognate dehydroamino acid molecules, Ac- \triangle Ala-NHMe and Ac-(Z)- Δ Phe-NHMe. The characteristic feature of the spectrum of $\operatorname{Ac}-(E)-\Delta$ Phe-NHMe is the spectral pattern

Figure 2 Atom numbering and selected torsion angles for Ac-(E)- Δ Phe-NHMe and other compounds.
in the region of amide I and II like that of AcΔ Ala-NHMe, which has a typical C_{5} hydrogen-bonded conformation [30]. The band of $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ at maximum $1659 \mathrm{~cm}^{-1}$ has a clearly elevated integral intensity. The band $\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right)$ has been found at $1505 \mathrm{~cm}^{-1}$ and is the most intensive one in the spectrum, as is the case for $\mathrm{Ac}-\Delta \mathrm{Ala}-\mathrm{NHMe}$. The band $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ lies at a frequency lower by $4 \mathrm{~cm}^{-1}$ and the band $\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right)$ at higher by $9 \mathrm{~cm}^{-1}$ than those respective bands of AcΔ Ala-NHMe [30]. The positions of these bands suggests that the C_{5} hydrogen bond in $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe is somewhat stronger than that in Ac- \triangle Ala-NHMe. Some small inflex can be recognized on the high-frequency edge of the $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ band in the $(E)-\Delta$ Phe molecule

Table 1 Amide and $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ Mode Frequencies $\left(\mathrm{cm}^{-1}\right.$) of Ac-(E)- Δ Phe-NHMe, Ac- Δ Ala-NHMe, and Ac-(Z)- Δ Phe-NHMe in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$(E)-\Delta$ Phe	Δ Ala [30]	$(Z)-\Delta$ Phe [30]	
$v_{\mathrm{s}}\left(\mathrm{N}^{1}-\mathrm{H}^{1}\right)$	3369	3407	3379	3401
$\nu_{\mathrm{s}}\left(\mathrm{N}^{2}-\mathrm{H}^{2}\right)$	3440	3407	3466	3451
$\mathrm{AI}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$	1692		1698	1698
$\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$	1659	1670	1663	1674
$v_{\mathrm{s}}\left(\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}\right)$	1632	1631	1674	
$\mathrm{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right)$	1505	1490	1496	1635
$\mathrm{AII}\left(\mathrm{C}^{2}-\mathrm{N}^{2} \mathrm{H}^{2}\right)$	1543	1517	1536	1477

like in the Δ Ala molecule, which points to the presence of a small amount of another conformer. The curvefitting procedure (Figure 4A) reveals that this band is at $1670 \mathrm{~cm}^{-1}$, i.e. $11 \mathrm{~cm}^{-1}$ higher than that in the C_{5} hydrogen-bonded conformation, exactly as in the Δ Ala molecule ($1663 \mathrm{~cm}^{-1}$ and $1674 \mathrm{~cm}^{-1}$). The band $\mathrm{AI}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$ has been discovered at $1692 \mathrm{~cm}^{-1}$, i.e. $6 \mathrm{~cm}^{-1}$ lower than the corresponding band of $\mathrm{Ac}-$ Δ Ala-NHMe and has also larger halfwidth $\left(21 \mathrm{~cm}^{-1}\right)$ compared with the latter compound ($14 \mathrm{~cm}^{-1}$). This may be due to a stronger interaction of $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}^{1}$ than that within the dehydroalanine residue [43] (cf. Figure 8).

Figure 3 The FTIR spectra of $\mathrm{Ac}-(E)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ and the cognate molecules, Ac- $\Delta \mathrm{Ala}-\mathrm{NHMe}$ and $\mathrm{Ac}-(Z)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($c=5 \times 10^{-3}$); in the $v_{\mathrm{s}}(\mathrm{N}-\mathrm{H})$ region absorption scale extended three times.

In the $\mathrm{N}-\mathrm{H}$ stretching region of $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe, three bands occur. The curve-fitting procedure yields the position of these bands: 3440,3407 and $3369 \mathrm{~cm}^{-1}$ (Figure 4B). The bands at 3440 and $3369 \mathrm{~cm}^{-1}$ belong to the conformer involved in the C_{5} hydrogen bond. The relatively narrow band at $3440 \mathrm{~cm}^{-1}$ originates from $v_{\mathrm{s}}\left(\mathrm{N}^{2}-\mathrm{H}^{2}\right)$ and it should be noted that it lies $26 \mathrm{~cm}^{-1}$ lower than the respective band Ac- Δ Ala-NHMe. This seems to be caused by the interaction of the $\mathrm{N}^{2}-\mathrm{H}^{2}$ with the phenyl ring π-electrons, and the value of the shift is quite large for such an interaction. The latter band, which is relevant to the $\mathrm{N}^{1}-\mathrm{H}^{1}$ group is $10 \mathrm{~cm}^{-1}$ lower than the corresponding frequency of Ac- \triangle Ala-NHMe. It also proves there is a stronger C_{5} hydrogen bond in Ac-(E)- Δ Phe-NHMe than in Ac$\Delta \mathrm{Ala}-\mathrm{NHMe}$. The band at $3407 \mathrm{~cm}^{-1}$ is the coincidental mode $v_{\mathrm{s}}(\mathrm{N}-\mathrm{H})$ of two $\mathrm{N}-\mathrm{H}$ groups of the other conformer. Also in region AII, the curve-fitting procedure revealed two pairs of frequencies (Figure 4C), one pair,

157015601550154015301520151015001490148014701460
Figure 4 The curve-fitted spectra of Ac-(E)- Δ Phe-NHMe in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution; (A) the AI and $v_{\mathrm{s}}\left(\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}\right)$ region; (B) the $\nu_{s}(\mathrm{~N}-\mathrm{H})$ region; (C) the AII region.
$\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right) 1505 \mathrm{~cm}^{-1}$ and $\operatorname{AII}\left(\mathrm{C}^{2}-\mathrm{N}^{2} \mathrm{H}^{2}\right) 1542 \mathrm{~cm}^{-1}$, belongs to the C_{5}-hydrogen-bonded conformer and the other, $\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right) 1490 \mathrm{~cm}^{-1}$ and $\operatorname{AII}\left(\mathrm{C}^{2}-\mathrm{N}^{2} \mathrm{H}^{2}\right) 1517$ cm^{-1}, belongs to the open conformer.

The spectrum Ac-(Z)- Δ Phe-NHMe (Figure 3) is quite different from that of $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe. Both amides $\mathrm{I}, \mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ and $\mathrm{AI}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$ lie higher, at 1674 and $1698 \mathrm{~cm}^{-1}$, respectively. Corresponding amides II, $\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right)$ and $\operatorname{AII}\left(\mathrm{C}^{2}-\mathrm{N}^{2} \mathrm{H}^{2}\right)$ occur lower, at 1477 and $1521 \mathrm{~cm}^{-1}$. Two bands in the $\mathrm{N}-\mathrm{H}$ stretching region are found at $v_{\mathrm{s}}\left(\mathrm{N}^{2}-\mathrm{H}^{2}\right) 3451 \mathrm{~cm}^{-1}$ and $\nu_{\mathrm{s}}\left(\mathrm{N}^{1}-\mathrm{H}^{1}\right) 3401 \mathrm{~cm}^{-1}$.

The spectrum of Ac-(E)- Δ Phe-NHMe in acetonitrile in the amide I region (Figure 5) differs from that in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which means a conformational change. Both AI bands become similar in intensity and move towards higher frequencies, the band $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ shifts by as much as $9 \mathrm{~cm}^{-1}$ on $1668 \mathrm{~cm}^{-1}$ and the band $\mathrm{Al}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$ shifts by $4 \mathrm{~cm}^{-1}$ on $1696 \mathrm{~cm}^{-1}$. This proves a breaking of the C_{5} hydrogen bond and a decrease in the strength of the $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}^{1}$ interaction. The bands of amide II are shifted toward the higher frequency, indicating that both $\mathrm{N}-\mathrm{H}$ groups become bonded with acetonitrile. On the contrary, the spectrum of AcΔ Ala-NHMe in acetonitrile is the same as that in dichloromethane. An exception is a small increase in the intensity of the inflex at $1674 \mathrm{~cm}^{-1}$, which means that the concentration of the second conformer increases a little. This indicates an almost unchanged C_{5} hydrogen-bonded conformation. In the spectrum of $\mathrm{Ac}-(Z)-\Delta \mathrm{Phe}-\mathrm{NHMe}$, the band $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$ does not change, $\mathrm{AI}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$ shifts at the position of $1693 \mathrm{~cm}^{-1}$

Figure 5 The FTIR spectra of Ac-(E)- \triangle Phe-NHMe and the cognate molecules, Ac- Δ Ala-NHMe and Ac-(Z)- Δ Phe-NHMe in acetonitrile solution in the AI, $v_{\mathrm{S}}\left(\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}\right)$ and AII region.
and both bands amide II shift toward a higher frequency showing both $\mathrm{N}-\mathrm{H}$ groups bonded with acetonitrile.

Theoretical Conformation Analysis

Figure 6 shows the 2D-Ramachandran surface for the free Ac-(E)- Δ Phe-NHMe molecule along with those of Ac- Δ Ala-NHMe and Ac-(Z)- Δ Phe-NHMe. Table 2 shows the calculated relative energies of all conformers obtained in vacuo and using PCM representation of dichloromethane and acetonitrile solutions also provides the selected conformational parameters in the

Figure 6 The landscape representation of the (ϕ, ψ) potential energy surface of the free Ac-(E)- Δ Phe-NHMe, Ac- $\triangle \mathrm{Ala}$-NHMe and $\mathrm{Ac}-(Z)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ molecule calculated at the $a b$ initio B3LYP/6-31G*//HF/3-21G level of theory along with the minima found on this surface with the B3LYP/6-31+G** method. The energy contours are drawn every $1 \mathrm{kcal} \mathrm{mol}^{-1}$.

Table 2 Relative Energies and Selected Conformational Parameters of the Studied Molecules in all their B3LYP/6$31+\mathrm{G}^{* *}$ Energy-minimized Conformers

Conformer	$\Delta \mathrm{E}$			ϕ	ψ	χ^{2}
	Vacuum	DCM	ACN			
Ac-(E)- \triangle Phe-NHMe						
E	0.00	0.96	2.34	-179	162	-56
C	4.23	2.17	2.80	-75	69	-24
H/F	4.37	0.00	0.00	-43	123	-31
D	6.66	3.63	3.75	-153	38	-25
Ac- Δ Ala-NHMe						
$\mathrm{E}^{\text {a }}$	-			-172.2	154.1	
$\mathrm{E}^{* a}$	-			162.6	-169.4	
E	0.00	0.00	0.00	180	169	-
B	5.12	3.86	3.60	-58	26	-
D	5.86	3.17	2.50	-165	25	-
H/F	5.98	2.08	1.21	-45	137	-
Ac-(Z)- Δ Phe-NHMe						
$\mathrm{F}^{\text {b }}$	-			56.8	-148.7	39.8
B	0.00	1.60	2.47	-56	24	-33
H/F	1.28	0.00	0.00	-44	139	-29
E	1.32	1.82	2.17	-129	160	19
E^{*}	1.54	2.45	2.79	133	170	-21
D	2.87	1.53	1.55	-112	10	21

Energy regions of the (ϕ, ψ) conformational map are denoted in terms of the short-hand letter notation introduced by Zimmerman et al. [40]. Relative energy ($\Delta \mathrm{E}$) in $\mathrm{kcal} \mathrm{mol}^{-1}$. Angles in degree (${ }^{\circ}$). Energy of the lowest conformer (Hartree): Ac-(E)- Δ Phe-NHMe (-725.734447193), Ac- Δ AlaNHMe (-494.667583604), Ac-(Z)- Δ Phe-NHMe (-725.73304 6984).
${ }^{\text {a }}$ crystal structure [52].
${ }^{\mathrm{b}}$ crystal structure [56].
solid state and in all energy-minimized free conformers for these molecules. Table 3 collects the structural parameters of the internal $\mathrm{X}-\mathrm{H} \cdots \mathrm{A}$ interaction and $\mathrm{C}=\mathrm{O}$ dipole attractions, based on Steiner's [44] and Allen [45] criteria, respectively.

The conformational map for $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe reveals four minima: E, C, H/F and D (Figure 7). The lowest-energy conformer, positioned in region E presents the fully extended structure with the ϕ, ψ torsion angles of $-179^{\circ}, 162^{\circ}$ (Table 2) that ensure the most effective π-electron cross-conjugation. This conformer is also stabilized by the $\mathrm{N}^{1}-\mathrm{H} \cdots \mathrm{O}^{2}$ hydrogen bond and by the weaker $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}^{1}$ and $\mathrm{N}-\mathrm{H} / \pi$ interactions (Table 3). The second conformer is located in region C , with angles ϕ, ψ of $-75^{\circ}, 69^{\circ}$ significantly deviating from planarity. It is stabilized by the $\mathrm{N}^{2}-\mathrm{H}^{2} \cdots \mathrm{O}^{1}$ hydrogen bond as well as by two other interactions, $\mathrm{N}^{2}-\mathrm{H}^{2} \cdots \mathrm{~N}^{1}$ and $\mathrm{C}(\mathrm{Ph})-\mathrm{H} \cdots \mathrm{O}^{2}$. It has also one sheared parallel dipole $\mathrm{C}=\mathrm{O} \bullet \cdots \subset \mathrm{C}=\mathrm{O}$ attraction [45]. The conformer C, however, has a much higher energy than the conformer $\mathrm{E}\left(\Delta \mathrm{E}_{\mathrm{C}-\mathrm{E}}=4.23 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The

Table 3 Structural Parameters for the Internal $X-H \cdots A$ Interactions and $C=O \backsim \cdots<C=O$ Dipole Attractions in the B3LYP/6-31+G** Geometries of the Studied Molecules

Parameter	Ac-(E)- Δ Phe-NHMe				Ac- \triangle Ala-NHMe				Ac-(Z)- Δ Phe-NHMe				
	E	C	H/F	D	E	B	D	H/F	B	H/F	E	E*	D
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$													
H $\ldots \mathrm{O}$	2.02	1.98	-	-	2.07	1.84	-	-	1.83	-	2.14	2.11	-
N $\cdots \mathrm{O}$	2.59	2.87	-	-	2.62	2.79	-	-	2.78	-	2.65	2.63	-
$\angle \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	113	144	-	-	111	154	-	-	154	-	109	109	-
$\angle \mathrm{C}=\mathrm{O} \cdots \mathrm{H}$	87	109	-	-	86	104	-	-	103	-	86	65	-
$\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$													
H $\cdots \mathrm{N}$	-	2.84	-	N) 2.60	-	2.68	N) 2.48	-	2.66	-	-	-	N) 2.92
				C) 2.51			C) 2.50						C) 2.36
$\mathrm{N} \cdots \mathrm{N}$	-	3.06	-	2.75	-	2.98	2.76	-	2.96	-	-	-	2.77
$\angle \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$	-	93	-	N) 87	-	97	N) 95	-	97	-	-	-	N) 71
				C) 93			C) 94						C) 103
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$													
H...	2.13	2.19	2.81	N) 2.23	2.24	2.45	N) 2.32	-	2.30	-	2.84	-	2.36
				C) 2.08			C) 2.55						
C $\cdots \mathrm{O}$	2.90	3.12	3.68	N) 2.95	2.90	2.78	N) 2.92	-	2.76	-	3.06	-	2.81
				C) 2.98			C) 2.87						
$\angle \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$	125	143	137	N) 122	117	96	N) 113	-	103	-	91	-	103
				C) 140			C) 96						
$\angle \mathrm{C}=\mathrm{O} \cdots \mathrm{H}$	102	96	68	N) 95	104	84	N) 102	-	84	-	70	-	82
				C) 111			C) 79						
$\mathrm{N}-\mathrm{H} \cdots \mathrm{C}(\mathrm{Ph})$													
H \cdots C	2.34	-	-	-	-	-	-	-	2.74	2.84	-	-	-
N \cdots C	3.07	-	-	-	-	-	-	-	3.09	3.10	-	-	-
$\angle \mathrm{N}-\mathrm{H} \cdots \mathrm{C}$	129	-	-	-	-	-	-	-	100	96	-	-	-
$\mathrm{C}=\mathrm{O} \downarrow \cdots$ C $=\mathrm{O}$													
$\mathrm{C}^{\mathrm{C}} \ldots \mathrm{O}^{\mathrm{N}}$	-	3.32	2.84	-	-	3.32	-	2.84	3.32	2.82	3.18	-	-
$\mathrm{C}^{\mathrm{N}} \ldots \mathrm{O}^{\text {C }}$	-	-	3.37	-	-	-	-	3.24	-	3.18	-	-	-
type		III	II			III		II	III	II			

Data presented only for the $\mathrm{X}-\mathrm{H} \cdots \mathrm{A}$ contacts $\left(\mathrm{X}=\mathrm{N}, \mathrm{C} ; \mathrm{A}=\mathrm{O}, \mathrm{N}, \mathrm{C}(\mathrm{Ph})\right.$) in which $\mathrm{H} \cdots \mathrm{A} \leq 3.2 \AA$ and $\angle \mathrm{X}-\mathrm{H} \cdots \mathrm{A}>90^{\circ}$ acc. to ref. [44] and for $\mathrm{C}=\mathrm{O} \leadsto \cdots \subset \mathrm{C}=\mathrm{O}$ attractions in which $\mathrm{C} \cdots \mathrm{O}<3.6 \AA$ acc. to ref. [45]. Distances are given in (\AA). Angles are given in (${ }^{\circ}$). N, C - ascribe the structural parameters to the N-terminal and C-terminal, respectively.
third conformer, situated in region H / F, has torsion angles ϕ, ψ of $-43^{\circ}, 123^{\circ}$ also significantly deviating from planarity. This structure is not $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}-$ hydrogen-bonded. It is stabilized basically by the slightly sheared antiparallel motif involving a pair of dipole $\mathrm{C}=\mathrm{O} \downarrow \cdots \mathrm{C}=\mathrm{O}$ attractions [45], and to a smaller extent, by the $\mathrm{C}(\mathrm{Ph})-\mathrm{H} \cdots \mathrm{O}^{2}$ interaction. Interestingly, its energy is only slightly higher than that of the conformer $\mathrm{C}\left(\Delta \mathrm{E}_{\mathrm{H} / \mathrm{F}-\mathrm{C}}=0.14 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Finally, the least stable is conformer $\mathrm{D}\left(\phi, \psi=-153^{\circ}, 38^{\circ}\right.$; $\Delta \mathrm{E}_{\mathrm{D}-\mathrm{E}}=6.66 \mathrm{kcal} \mathrm{mol}^{-1}$). The main stabilizing forces are two antiparallel $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and additionally the $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}(\mathrm{Ph})-\mathrm{H} \cdots \mathrm{O}^{2}$ interactions.

DISCUSSION

As can be seen, Ac-(E)- Δ Phe-NHMe in dichloromethane displays a mixture of two conformers (Figure 3), with a
predominance of conformer E . The spectrum of $\mathrm{Ac}-(E)-$ Δ Phe-NHMe is like that of Ac- Δ Ala-NHMe, particularly in the region of bands AI and AII. The positions of these bands together with the low-frequency shifted $\mathrm{N}^{1}-\mathrm{H}^{1}$ bands prove that the conformers E of both compounds are stabilized by the quite strong $\mathrm{N}^{1}-\mathrm{H}^{1} \ldots \mathrm{O}^{2}$ hydrogen bonds. The same conclusion can be drawn from the Ramachandran diagrams (Figure 6). The torsion angles ϕ and ψ of the extended conformers E of both the $(E)-\Delta$ Phe and Δ Ala compounds reveal that a quite strong π-electron conjugation appears involving the $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ double bond and both N - and C-terminal amide moieties. Therefore, conformers E of both compounds are placed in the global minima and the gaps in energy between them and the second in energy order are relatively large (Table 2).

A comparison of the positions of the $\mathrm{AI}\left(\mathrm{C}^{2}=\mathrm{O}^{2}\right)$, $\operatorname{AII}\left(\mathrm{C}^{1}-\mathrm{N}^{1} \mathrm{H}^{1}\right)$ and $\operatorname{AI}\left(\mathrm{C}^{1}=\mathrm{O}^{1}\right)$ bands (Table 1) shows

Figure 7 Stereo views of the conformers of Ac-(E)- Δ PheNHMe localized on the (ϕ, ψ) potential energy surface optimized at the B3LYP/6-311 $+\mathrm{G}^{* *}$ level of theory. Geometric parameters of hydrogen bonds and the $\mathrm{C}=\mathrm{O}$ dipole attractions are collected in Table 3.
that the C_{5} hydrogen bond $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$ and interaction $\mathrm{C}^{\beta}-\mathrm{H}_{\cdots} \cdots \mathrm{O}^{1}$ within $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe are somewhat stronger than those within Ac- Δ Ala-NHMe. This is in agreement with interactions found in the calculated structures (Table 3), and can be explained by the influence of the phenyl ring in position E. The phenyl ring of $\mathrm{Ac}-(E)-\Delta \mathrm{Phe}$-NHMe is not π-electron conjugated with the double bond $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ as the angle χ^{2} amounts to -55°. There is a weak interaction between the phenyl ring π-system and the $\mathrm{N}^{2}-\mathrm{H}^{2}$ bond, instead. The distance (Figure 8) between the nearest $\mathrm{C}_{1 \mathrm{p}}$ carbon atom and the $\mathrm{N}^{2}-\mathrm{H}^{2}$ equals $3.07 \AA$, which can be relevant to the attraction forces $\sim 1-2 \mathrm{kcal} \mathrm{mol}^{-1}$

Figure 8 Selected structural parameters for the conformers E of the $\mathrm{Ac}-(E)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ and $\mathrm{Ac}-\Delta \mathrm{Ala}-\mathrm{NHMe}$ molecules. Crystal distances [43] are given in parenthesis.
[46,47]. This interaction is responsible for the shift of $v_{\mathrm{s}}\left(\mathrm{N}^{2}-\mathrm{H}^{2}\right)$ band down to $3440 \mathrm{~cm}^{-1}$, i.e. $26 \mathrm{~cm}^{-1}$ lower than the frequency of the corresponding band of the dehydroalanine analogue. Such interactions between the phenylalanine $\mathrm{N}-\mathrm{H}$ and an aromatic ring occur often and shift the frequency of the $v_{s}(\mathrm{~N}-\mathrm{H})$ band by $11-50 \mathrm{~cm}^{-1}$ [19, 46-51]. As a result of the $\mathrm{N}^{2}-\mathrm{H}^{2} / \pi$ system interaction in Ac-(E)- \triangle Phe-NHMe, an increase in the angle $\mathrm{C}^{\beta}-\mathrm{C}^{\alpha}-\mathrm{C}^{2}$ and a decrease in the angles $\mathrm{N}^{1}-\mathrm{C}^{\alpha}-\mathrm{C}^{2}$ and $\mathrm{N}^{1}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}$ ensue as the respective angles of Ac- Δ Ala-NHMe are compared. The increase in the angle $\mathrm{C}^{\beta}-\mathrm{C}^{\alpha}-\mathrm{C}^{2}$ effects a shortening of the distances $\mathrm{H}^{\beta} \cdots \mathrm{O}^{1}$ and $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$ (cf. [43]), which causes the $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$ and $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{O}^{1}$ interactions in Ac-(E)- Δ Phe-NHMe to be stronger than in the Ac- Δ AlaNHMe molecule.

In acetonitrile, the molecule of $\mathrm{Ac}-(E)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ loses its internal C_{5} hydrogen bond and becomes unfolded, whereas that of Ac- Δ Ala-NHMe does not vary. In conformer E of $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe, the $\mathrm{N}^{2}-\mathrm{H}^{2}$ is shielded by the phenyl ring and the molecule is weakly solvated. As a result, the conformational equilibrium shifts toward solvent-accessible open conformers and the conformer E disappears. On the contrary, the conformer E of $\mathrm{Ac}-\Delta \mathrm{Ala}-\mathrm{NHMe}$ is more stable
$\left(\Delta \mathrm{E}_{\mathrm{E}-\mathrm{B}}=5.12 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, the uncovered $\mathrm{N}^{2}-\mathrm{H}^{2}$ moiety can be solvated with acetonitrile without a serious influence on the internal $\mathrm{N}^{1}-\mathrm{H}^{1} \cdots \mathrm{O}^{2}$ hydrogen bond and π-cross conjugation (the interaction between the model N -methyl acetamide and acetonitrile amounts to $\sim 4.7 \mathrm{kcal} \mathrm{mol}^{-1}$; Siodłak D; unpublished results). Thus, the conformer E of Ac- A Ala-NHMe maintains its structure in acetonitrile and in the solid state as well [52]. To corroborate this reasoning and to answer the question of what sort of conformer of Ac-(E)- Δ Phe-NHMe in acetonitrile this is, the solvation energies of the $\Delta \mathrm{Ala}$ and Δ Phe compounds in this solvent were calculated. Data are given in Table 2 as $\Delta \mathrm{E}_{\mathrm{ACN}}$. As seen, the interaction with the solvent can change the energetic orders of conformers. While for Ac- Δ Ala-NHMe, the lowest-energy conformer continues to be conformer E , in the case of $\mathrm{Ac}-(E)-\Delta$ Phe-NHMe, the conformer E is no longer the lowest-energy in acetonitrile. The lowest-energy one is the open conformer H/F.

Ac-(Z)- Δ Phe-NHMe in dichloromethane has a v_{s} $\left(\mathrm{N}^{1}-\mathrm{H}^{1}\right)$ band at $3401 \mathrm{~cm}^{-1}$. This band is broad and seems to be composed of more than one component. Its position suggests the presence of a C_{5} warped conformer [30] (Figure 3). In contrast to the deep conformational global minima of Ac-(E)- Δ Phe-NHMe and Ac- Δ Ala-NHMe, driven by the main chain π-cross-conjugation, Ac-(Z)- Δ Phe-NHMe has a shallow potential energy surface resulting from a deficit in this conjugation (Table 2). The phenyl ring in Ac-(Z)- Δ Phe-NHMe divides the region of extended conformations in two, E and E^{*}, and makes them warped and shifted toward the inside of the map (Figure 6). Therefore, the global minimum is occupied by conformer B $[53,54]$. Ac-(Z)- Δ Phe-NHMe, as calculated, in dichloromethane (Table 2, $\Delta \mathrm{E}_{\mathrm{DCM}}$) and acetonitrile adopts conformation H/F. Similarly, as in vacuum, the intervals between the individual conformers are not large so that the gap between the highest and the lowest in energy conformer does not exceed $3 \mathrm{kcal} \mathrm{mol}^{-1}$. Therefore, the conformation of this compound is not conclusive. As mentioned, in dichloromethane solution Ac-(Z)- Δ Phe-NHMe, a C_{5} warped conformation is suggested. On the other hand, the low-frequency shifted $v_{\mathrm{s}}\left(\mathrm{N}^{1}-\mathrm{H}^{1}\right)$ band at $3401 \mathrm{~cm}^{-1}$ may be also due to the interaction between the $\mathrm{N}^{1}-\mathrm{H}^{1}$ and phenyl ring π-system in the conformer H/F [55]. In solid state $\mathrm{Ac}-(Z)-\Delta$ Phe-NHMe assumes conformation H/F [56].

As seen, only Ac- Δ Ala-NHMe conserves conformer E in polar and H -bond forming solvent, i.e. acetonitrile, but the (E)- Δ Phe and probably (Z)- Δ Phe counterparts assume conformations H/F, whose H-bond donors are most exposed on the outside of the molecules. The solvation by H -bond forming solvent stabilized preferentially, sometimes by more than $3 \mathrm{kcal} \mathrm{mol}^{-1}$ [57,58], the open structures that are energetically
unfavourable in the gas phase. This is expected in view of the greater potential for intermolecular hydrogen bonding possessed by these structures. So, it is not surprising that in acetonitrile, $\mathrm{Ac}-(E)-\Delta \mathrm{Phe}-\mathrm{NHMe}$ loses its internally C_{5} bonded conformation and adopts conformation H/F.

The FTIR and theoretical analyses show that Ac-(E)- Δ Phe-NHMe has a determined tendency to adopt the extended conformer E in a non-polar environment. The same tendency seems to be true in the case of the few existing examples of peptides with the (E)- Δ Phe residue. TFA-Gly-(E)- Δ Phe [59] and Pht-(E)$\Delta \mathrm{Phe}-\mathrm{NHtBu}$ [60] in the solid state are in extended conformation. In Boc-Ala-(E)- Δ Phe-Val-OMe, two NHs, (E)- Δ Phe NH and Val NH, participate in intramolecular hydrogen bonding, based on the NMR data. It has been concluded that the peptide takes in chloroform in two consecutive γ-turn conformers [27]. We suggest another alternative, plausible explanation. $\Delta \mathrm{Phe} \mathrm{N}^{1}-\mathrm{H}^{1}$ would be involved in the $\mathrm{C}_{5} \mathrm{H}$-bonded conformation E and Val NH [i.e. (E)- Δ Phe $\mathrm{N}^{2}-\mathrm{H}^{2}$] would be engaged in the interaction with the phenyl ring as is the case for $\mathrm{Ac}-(E)-\triangle$ Phe-NHMe. The remarkable NOE between Val NH and (E)- Δ Phe phenyl H in this molecule appears to support the supposition. The FTIR and theoretical analyses also indicate a similar tendency for Ac-(E)- $\triangle \mathrm{Abu}$-NHMe to adopt conformer E $[31,53$] in a non-polar environment. A more aggressive solvent such as acetonitrile, in the case of both the (E)- Δ Phe and (E)- $\Delta \mathrm{Abu}$ compounds, disrupts the C_{5} hydrogen bond and shifts the conformational equilibrium to populate the more open form. This conformational dimorphism seems to be a general feature of the (E)- Δ Xaa residues and may be of biological interest as a function [61] or selectivity switch [62].

Acknowledgements

The authors gratefully acknowledge the University of Opole for grant number 4/ICh/2003-W and the Academic Computer Center CYFRONET AGH of Kraków for grant number KBN/SGI2800/UOpolski/011/2001.

REFERENCES

1. Siodłak D, Rzeszotarska B, Broda MA, Kozioł AE, Kołodziejczyk E. Conformational investigation of α, β-dehydropeptides. XIII. Conformational properties of N-acetyl- α, β-dehydrovaline $N^{\prime} N^{\prime}$ dimethylamide. Acta Biochim. Polon. 2004; 51: 145-152.
2. Fate GD, Benner CP, Grode SH, Gilbertson TJ. The biosynthesis of sulfomycin elucidated by isotopic labeling studies. J. Am. Chem. Soc. 1996; 118: $11363-11368$.
3. Saito H, Yamada T, Okumura K, Yonezawa Y, Shin C. Convenient synthesis of the main dehydrohexapeptide skeleton constituting a macrocyclic antibiotic, berninamycin A. Chem. Lett. 2002: 1098-1099.
4. Naidu BN, Sorenson ME, Connolly TP, Ueda Y. Michael addition of amines and thiols to dehydroalanine amides: a remarkable rate acceleration in water. J. Org. Chem. 2003; 68: 10098-10 102.
5. Jack RW, Jung G. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 2000; 4: 310-317.
6. Bower CK, Bothwell MK, McGuire J. Lantibiotics as surface active agents for biomedical applications. Colloids Surfaces B 2001; 22: 259-265.
7. Hoffmann A, Pag U, Wiedemann I, Sahl H-G. Combination of antibiotic mechanism in lantibiotics. Il Farmaco 2001; 57: 685-691.
8. Garneau S, Martin NI, Vederas JC. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 2002; 84: 577-592.
9. Sano T, Kaya K. Two new 2-(E) amino-2-butenoic acid (Dhb)containing microcystins from Oscillatoria agardhii. Tetrahedron 1998; 54: 463-470.
10. Sano T, Beattie KA, Codd GA, Kaya K. Two (Z)-dehydrobutyrine containing microcystins from hepatotoxic bloom of Oscillatoria agardhii from Soulseat Loch, Scotland. J. Nat. Prod. 1998; 61: 851-853.
11. Beattie KA, Kaya K, Sano T, Codd GA. Three dehydrobutyrinecontaining microcystins Nostoc. Phytochemistry 1998; 47: 1289-1292.
12. Brittain S, Mohamed ZA, Wang J, Lehmann VKB, Carmichael WW, Rinehart K. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon 2000; 38: 1759-1771.
13. Łukomska J, Kasprzykowski F, Łankiewicz L, Grzonka Z. Peptide toxins of cyanobacteria. Wiad. Chem. 2002; 56: 57-82. CA 2002; 137: 104855.
14. Pedras MSC, Taylor JT, Nakashima TT. A novel chemical signal from 'blackleg' fungus: beyond phytotoxins and phytoalexins. J. Org. Chem. 1993; 58: 4778-4480.
15. Nitz TJ, Shimohigashi Y, Costa T, Chen H-Ch, Stammer ChH. Synthesis and receptor binding affinity of both E- and Zdehydrophenylalanine ${ }^{4}$ enkephalins. Int. J. Peptide Protein Res. 1986; 27: 522-528.
16. Edvards JV, Fanger BO, Cashman EA, Eaton SR, McLean LR. Amide bond substitutions and conformational constraints applied to bombesin antagonists. In Peptides: Chemistry and Biology. Proc. 12th Am. Pept. Symp., 1991. Smith JA, Rivier JE (eds). Escom: Leiden, 1992; 52-53.
17. Edvards JV, Fanger BO. Phenylalanine analogs of bombesin. Patent WO 9316,105 1993.
18. Mosberg HI, Dua RK, Pogozheva ID, Lomize AL. Development of a model for the δ-opioid receptor pharmacophore. 4. Residue 3 dehydrophenylalanine analogues of Tyr-c[D-Cys-Phe-D-Pen])OH (JOM-13) confirm required gauche orientation of aromatic side chain. Biopolymers 1996; 39: 287-296.
19. Mathur P, Ramakumar S, Chauhan VS. Peptide design using α, β dehydro amino acids: from β-turns to helical hairpins. Biopolymers (Peptide Sci.) 2004; 76: 150-161.
20. Ward DE, Vazquez A, Pedras MSC. Understanding host-selective phytotoxicity: synthesis and biological discrimination of phomalide and its (Z)-isomer. J. Org. Chem. 1996; 61: 8008-8009.
21. Pietrzyński G, Rzeszotarska B. α, β-Dehydroamino acids as peptide modifiers: conformational aspects. Polish J. Chem. 1995; 69: 1595-1614 and references cited therein.
22. Jain R, Chauhan VS. Conformational characteristics of peptides containing α, β-dehydroamino acid residues. Biopolymers (Peptide Sci.) 1996; 40: 105-119 and references cited therein.
23. Singh TP, Kaur P. Conformation and design of peptides with α, β dehydroamino acid residue. Progress Biophys. Mol. Biol. 1997; 66: 141-165 and references cited therein.
24. Joshi RM, Chauhan VS. Synthesis of peptides based on α, β -didehydro- α-amino acids. In Methods of Organic Chemistry (Houben-Weyl.) Synthesis of Peptides and Peptidomimetics. Vol.

E22c, Goodman M, Felix A, Moroder L, Toniolo C (eds). Thieme: Stuttgart-New York, 2003; 636-662 and references cited therein.
25. Stohlmeyer MM, Tanaka H, Wandless TJ. A stereospecific elimination to form dehydroamino acids: synthesis of the phomopsin tripeptide side chain. J. Am. Chem. Soc. 1999; 121 : 6100-6101.
26. Sai H, Ogiku T, Ohmizu H. Stereoselective syntheses of $(E)-\alpha, \beta-$ dehydroamino acids and (E)- α, β-dehydropeptides by stereospecific dehydration with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Synthesis 2003: 201-204.
27. Inai Y, Kurashima S, Hirabayashi T, Yokota K. Synthesis of Δ^{E} Phecontaining tripeptide via photoisomerization and its conformation in solution. Biopolymers 2000; 53: 484-496.
28. Kubica Z, Koźlecki T, Rzeszotarska B. Synthesis of peptides with α, β-dehydroamino acids. XIII. Photoisomerization of $\mathrm{Ac}-(Z)-\Delta$ PheNHMe: Ac-(E)- Δ Phe-NHMe. Chem. Pharm. Bull. 2000; 44: 296-297.
29. Hruby VJ, Li G, Haskell-Luevano C, Shenderovich M. Design of peptides, proteins, and peptidomimetics in chi space. Biopolymers (Peptide Sci.) 1997; 43: 219-266.
30. Broda MA, Rzeszotarska B, Smełka L, Rospenk M. Conformational investigation of α, β-dehydropeptides. VIII. N-Acetyl $-\alpha, \beta$ dehydroamino acid N^{\prime}-methylamides: conformation and electron density perturbation from infrared and theoretical studies. J. Peptide Res. 1997; 50: 342-351.
31. Broda MA, Rzeszotarska B, Smełka L, Pietrzyński G. Conformational investigation of α, β-dehydropeptides. IX. N-Acetyl-(E)- α, β dehydrobutyrine N^{\prime}-methylamide: stereoelectronic properties from infrared and theoretical studies. J. Peptide Res. 1998; 52: 72-79.
32. Broda MA, Rzeszotarska B. Stereoelectronic properties of N-acetylα, β-dehydroamino acid N^{\prime}-methylamides. Lett. Peptide Sci. 1998; 5: 441-443.
33. Marshall GR. Three dimensional structure of peptide-protein complexes: implication for recognition. Curr. Opin. Struct. Biol. 1992; 2: 904-919.
34. Langer M, Pauling A, Retey J. The role of dehydroalanine in catalysis by histidine ammonia lyase. Angew. Chem. Int. Ed. 1995; 34: 1464-1465.
35. GRAMS/386 Version 3.01B. Galactic Industries Corp.: Salem, NH, 1994.
36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr. T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. 2003; Gaussian 03, Revision B.04. Gaussian, Inc.: Pittsburgh, PA.
37. Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks III JA, Pople J. Theoretical study of blocked glycine and alanine peptide analogues. J. Am. Chem. Soc. 1991; 113: 5989-5997.
38. Surfer 8. Golden Software, Inc, golden 2002.
39. Ramachandran GN, Saisekharan V. Conformation of polypeptides and proteins. Adv. Protein Chem. 1968; 23: 283-438.
40. Zimmerman SS, Pottle MS, Némethy G, Scheraga HA. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Macromolecules 1977; 10: 1-9.
41. Herzberg O, Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins 1991; 11: 223-229.
42. Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular
potentials for the prevision of solvent effect. Chem. Phys. 1981; 55: 117-129.
43. Crisma M, Formaggio F, Toniolo C, Yoshikawa T, Wakamiya T. Flat peptides. J. Am. Chem. Soc. 1999; 121: 3272-3278.
44. Steiner T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002; 41: 48-76.
45. Allen FH, Baalham CA, Lommerse JPM, Raithby PR. Car-bonyl-carbonyl interaction can be competitive with hydrogen bonds. Acta Cryst. 1998; B54: 320-329.
46. Malone JF, Murray CM, Charlton MH, Docherty R, Lavery AJ. $\mathrm{X}-\mathrm{H} \cdots \pi$ (phenyl) interactions. Theoretical and crystallographic observations. J. Chem. Soc. Faraday Trans. 1997; 93: 3429-3436.
47. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K. Origin of the attraction of the NH / π interaction: comparison with OH / π and CH / π interactions. J. Am. Chem. Soc. 2000; 122: 11450-11458.
48. Crisma M, Formaggio F, Valle G, Toniolo C, Saviano M, Iacovino R, Zaccaro L, Benedetti E. Experimental evidence at atomic resolution for intramolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ (phenyl) interactions in a family of amino acids derivatives. Biopolymers 1997; 42: 1-6.
49. Jiménez AI, Cativiela C, Aubry A, Marraud M. β-Turn preferences induced by 2,3 -methanophenylalanine chirality. J. Am. Chem. Soc. 1998; 120: 9452-9459.
50. Jiménez AI, Cativiela C, Gomez-Catalán, Pérez JJ, Aubry A, Paris M, Marraud M. Influence of side chain restriction of $\mathrm{NH} \cdots \pi$ interaction on the β-turn folding modes of dipeptides incorporating phenylalanine cyclohexane derivatives. J. Am. Chem. Soc. 2000; 122: 5811-5821.
51. Steiner T, Koellner G. Hydrogen bonds with π-acceptors in proteins: Frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 2001; 305: 535-557.
52. Palmer DE, Pattaroni Ch, Nunami K, Chanda RK, Goodman M, Kakamiya T, Fukase K, Horimoto S, Kitazawa M, Fujita H, Kubo A, Shiba T. Effects of dehydroalanine on peptide conformation. J. Am. Chem. Soc. 1992; 114: 5634-5642.
53. Thormann M, Hofman H-J. Conformational properties of peptides containing dehydro amino acids. J. Mol. Struct. (Theochem.) 1998; 431: 79-96.
54. Siodłak D, Broda MA, Rzeszotarska B. Conformational analysis of α, β-dehydropeptide models at the HF and DFT levels. J. Mol. Struct. (Theochem) 2004; 668: 75-85.
55. Siodłak D, Broda MA, Rzeszotarska B, Dybała I, Kozioł AE. Conformational investigation of α, β-dehydropeptides. XI. Molecular and crystal structure of $\mathrm{Ac}-(Z) \Delta \mathrm{Phe}-\mathrm{NMe}_{2}$ as compared to those of related molecules. J. Peptide Sci. 2003; 9: 64-74.
56. Souhassou M, Lecomhe C, Ghermani N-E, Rohmer MM, Wiest M, Blessing RH. Electron distribution in peptides and related molecules. 2. An experimental and theoretical study of (Z)- N-acetyl α, β-dehydropehenylalanine methylamide. J. Am. Chem. Soc. 1992; 114: 2371-2382.
57. Buesnel R, Hillier IH, Masters AJ. A molecular dynamics study of the conformation of alanine dipeptide in aqueous solution using a quantum mechanical potential. Mol. Phys. 1997; 90: 787-792.
58. Bohr HG, Frimand K, Jalkanen KJ, Nieminen RM, Suhai S. Neural-network analysis of the vibrational spectra of N-acetyl-Lalanyl N-methyl amide conformational states. Phys. Rev. E 2001; 64: 021905 1-13.
59. Kubica Z, Rzeszotarska B, Makowski M, Główka ML, Gałdecki Z. Synthesis of peptides with α, β-dehydroamino acids. Part IV. Crystal structure of (E)-trifluoroacetylglicyldehydrophenylalanine and the assignment of the geometry of dehydrophenylalanine residues. Polish J. Chem. 1988; 62: 107-113.
60. Easton CJ, Hutton CA, Roselt PD, Tiekink ERT. Synthesis and molecular structure of stable derivatives of (E) and (Z) dehydrophenylalanine. Aust. J. Chem. 1991; 44: 687-694.
61. Taylor P, Mikol V, Kallen J, Burkhard P, Walkinshaw MD. Conformational polymorphism in peptidic and nonpeptidic drug molecules. Biopolymers (Peptide Sci.) 1997; 40: 585-592.
62. Müller G. The β-turn as a selectivity switch: $\beta \mathrm{I}$ or $\beta \mathrm{II}$? That is the question. Angew. Chem. Int. Ed. Engl. 1996; 35: 2767-2769.

[^0]: *Correspondence to: Barbara Rzeszotarska, Institute of Chemistry, University of Opole, Opole Street 48, 45-052 Opole, Poland; email: rzeszot@uni.opole.pl
 ${ }^{\ddagger}$ For Part XIII in this series see Ref. [1].

